

Data Mining for network topology and traffic

Christos Faloutsos

Carnegie Mellon University www.cs.cmu.edu/~christos

Outline

- Fast estimation of the neighborhood function [w/ C. Palmer, M. Faloutsos, G. Siganos]
 - Automatic traffic mining

Power laws in networks

- Internet; web; gnutella P2P networks
- Q: Any pattern?
- A: power laws!

Hop Exponent H

• A: neighborhood function N(h) = number of pairs within h hops or less [Nicol] - power law, too!

More on the hop exponent

- 'Intrinsic'/fractal dimensionality of the nodes of the graph
- But: naively it needs O(N**2) (terrible for large graphs)
- What to do?

Solution:

• A: Approximation: 'ANF' (approx. neighborhood function [KDD02] - response time: from day to minutes

Scalability of ANF!

Running time (mins)

(Approx.) neighborhood function

- Useful for estimating the diameter of a graph;
- the ``effective radius'' of a node (distance to 90%-tile of the other nodes)
- the connectivity under failures [Nicol]
- quick checks for (dis-)similarity between two graphs

Outline

• Fast estimation of the neighborhood function [w/ C. Palmer, M. Faloutsos, G. Siganos]

Automatic traffic mining

Problem #2: Forecasting & Mining

Problem definition

• Given: one or more sequences

$$x_1, x_2, \ldots, x_t, \ldots; (y_1, y_2, \ldots, y_t, \ldots)$$

- Find
 - forecasts; patterns; clusters; outliers
- **→•** automatically;
- w/ single-pass, any-time algo

Motivation - Applications

- Network traffic modeling, AND
- Financial, sales, economic series
- Medical
- scientific/environmental
- military; industrial; ...

AWSOM: Some Results

AWSOM: Some Results

Conclusions

- ANF: Fast approximation for Neighborhood function (time: from days to minutes 10x, 100x, 1000x speedup)
- AWSOM: Automatic, 'hands-off' traffic modeling (first of its kind!)